Multitemporal Fusion for the Detection of Static Spatial Patterns in Multispectral Satellite Images--with Application to Archaeological Survey
نویسندگان
چکیده
We evaluate and further develop a multitemporal fusion strategy that we use to detect the location of ancient settlement sites in the Near East and to map their distribution, a spatial pattern that remains static over time. For each ASTER images that has been acquired in our survey area in north-eastern Syria, we use a pattern classification strategy to map locations with a multispectral signal similar to the one from (few) known archaeological sites nearby. We obtain maps indicating the presence of anthrosol – soils that formed in the location of ancient settlements and that have a distinct spectral pattern under certain environmental conditions – and find that pooling the probability maps from all available time points reduces the variance of the spatial anthrosol pattern significantly. Removing biased classification maps – i.e. those that rank last when comparing the probability maps with the (limited) ground truth we have – reduces the overall prediction error even further, and we estimate optimal weights for each image using a non-negative least squares regression strategy. The ranking and pooling strategy approach we propose in this study shows a significant improvement over the plain averaging of anthrosol probability maps that we used in an earlier attempt to map archaeological sites in a 20 000 km2 area in northern Mesopotamia, and we expect it to work well in other surveying tasks that aim at mapping static surface patterns with limited ground truth in long series of multispectral images.
منابع مشابه
Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images
In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...
متن کاملFusion of Panchromatic and Multispectral Images Using Non Subsampled Contourlet Transform and FFT Based Spectral Histogram (RESEARCH NOTE)
Image fusion is a method for obtaining a highly informative image by merging the relative information of an object obtained from two or more image sources of the same scene. The satellite cameras give a single band panchromatic (PAN) image with high spatial information and multispectral (MS) image with more spectral information. The problem exists today is either PAN or MS image is available fr...
متن کاملAn efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملHerbal plants zoning using target detection algorithms on time-series of Sentinel-2 multispectral images (Amygdalus Scoparia)
Today, medicinal plants have a special place in the economy and health of a society. Due to the natural growth of many of these products, the necessity of zoning them for optimum and optimal utilization seems necessary. Traditional zoning solutions are not efficient due to their low accuracy and speed, therefore a new approach is needed. Remote sensing data have many applications in various fie...
متن کاملIntroducing Satellite Remote Sensing Systems and its Application in Archaeology Case Study: Behshahr Plain- Mazandaran
Human groups have considered the Behshahr plain of Mazandaran in the past Due to its particular geographical shape, location between the Caspian Sea and mountains, and the existence of some rivers in the region. However, our knowledge of this area is limited to several published surveys and archaeological investigation of its ancient sites. No detailed research has conducted on the formation of...
متن کامل